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The time-independent Schrödinger equation
in the frame of Feynman's version of quantum mechanics 

Jozef Hanca

Institute of Physics, Faculty of Science, P.J. Safarik University 
Park Angelinum 9, 040 01 Kosice, Slovakia

One of the weaknesses of the Feynman's path integral approach is primarily mathematically complicated finding  
of eigenvalues and eigenstates, which are "easily obtainable" from the Schrödinger equation. We have developed  
and started testing a new heuristic derivation of time-independent Schrödinger equation in terms of Feynman's  
approach. With the help of this derivation students through spreadsheets in Excel or JAVA applets can model  
and find naturally and simply eigenwavefunctions and energy eigenvalues for any one-dimensional potential. A  
very significant advantage of this new approach consists in the use of high school elementary vector algebra and  
the  Pythagorean  Theorem  only,  so  there  is  no  explicit  use  of  operators,  partial  derivatives  or  differential  
equations.  The  procedure  and  developed  teaching  materials,  providing  deep  conceptual  understanding  of  
eigenstates and energy quantization, are most suitable for algebra based introductory physics courses, quantum  
mechanics introductions for future high school physics teachers, engineers, chemists or biologists. With small  
changes the derivation is also applicable and very useful in traditional quantum mechanics courses starting from  
Schrödinger formulation.

I. PREVIEW: SEVERAL WORDS ABOUT MOTIVATION FOR THE PAPER
In this section I would like to introduce reasons, which motivated me for this paper. (1) The first reason  
of my motivation is my personal interest in teaching and study of Feynman's quantum mechanics (basic ideas 
and our results are in the Berlin MPTL 10 contribution [3]). If I summarize my activities dealing with 
Feynman's quantum mechanics,  this  year (2006)  is  8th year of  my study and pedagogical  research 
dealing with Feynman's version of quantum theory; 6th year of my teaching this approach; 1th year 
after finishing my external Ph.D. study with thesis entitled:  Feynman's approach in teaching quantum 
mechanics. 

Three important events led to my conversion to the Feynman approach in teaching quantum theory. 
As 18 years old in 1992 I was gifted by three volumes (five in Slovak version) of famous Feynman's 
lectures on physics and during my university study Richard Feynman became my greatest hero of 
science, man of legendary proportions among physicists. 

In 1998 I obtained Feynman's popular QED book: The Strange Theory of Light and Matter [2]. This book, 
collections of  public  lectures  about quantum electrodynamics and basic ideas of  Feynman's many 
paths approach was absolutely great and fascinating for me. So during May of 1998 I translated it into 
Slovak with my friend and colleague Slavo Tuleja. Later this translation officially appeared in Slovakia 
in 2000. 

The third  event  leading to  my conversion  was reading  Edwin Taylor's  Oersted  medal  speech in 
American Journal of Physics [8]. I was really impressed by the following Edwin Taylor's words: „One 
day several years ago it dawned on me that the electron is stupid. Or - so as not to insult any of God's creatures  
- let us say that the electron is brainless; no one can argue with that! ... The brainless electron has no chance  
whatsoever  to  decode the  mysteries  of  the  Schrödinger  equation.  It  requires  a  simpler  set  of  instructions...  
Feynman stands astride the Universe and issues a three-word command so simple that every particle can obey:  
Explore all paths!  Particles are so brainless that they cannot choose a single path, so explore them all. And  
from this blind exploration come the essential surprises,  paradoxes,  strangeness -  and power! -  of quantum  
mechanics.” 
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(2)  The second reason for this contribution,  also personal,  was an interesting discussion after my 
MPTL 10 workshop lecture with one of participants whose objections were following:

• Be careful in using ideas from public lectures like Feynman's QED. Created ideas in minds of 
students and ordinary people after any public lecture are usually so wrong that it  causes 
complete misunderstanding of physics and real world around us.

• Try to avoid confusing audience, if you compare student’s understanding quantum mechanics 
from courses based on two different versions (Schrödinger and Feynman).

In response to the first criticism I use my experience showing that this should not be our case. Results 
of  testing  and  assigning  demonstrate  that  students  of  our  courses  have  much  better  conceptual 
understanding,  intuitive feel and skills to describe and predict quantum behavior in comparison with 
students of traditional courses. They are better in both cases: time-dependent and time-independent 
situations. In addition our approach leads to more considerable student's enthusiasm.

Concerning the second objection it consists in the fact that Schrödinger’s wave mechanics is easy and 
very good for describing time-independent states – eigenfunctions, one of most important part of any 
university  quantum  course  whereas  Feynman's  approach  is  much  more  difficult  in  doing  these 
descriptions and it is especially not very suitable in finding stationary states. However as it will be 
seen bellow the opposite is true. In our pedagogical approach describing stationary states in the frame 
of Feynman's quantum mechanics is less abstract, mathematically much 
simpler and physically more understandable. 

(3) The third motivating historical  reason for this paper was important 
date of this year,  13 March 2006. This date marks the 80th anniversary of 
the official the time-independent Schrödinger equation birth. On this day 
80  years  ago  the  Schrödinger  paper  Quantization  as  a  Problem  of  
Eigenvalues  (Part  I)  with  the  time-independent  Schrödinger  equation 
appeared in issue 4 of Annalen der Physik [6]. In the following months 
Schrödinger published other five excellent articles, which together with 
the first mentioned we understand as the starting point and the rise of 
wave mechanics [4]. 

(4) The last motivation is the meaning of the Schrödinger's equation, the 
most quoted equation in the scientific literature of the twentieth century 
[4].  The  Schrödinger  equation  is  the  cornerstone  of  the  wave  mechanics  –  traditional  approach 
dominating at least last 50 years in introductory quantum mechanics courses.  The time-independent 
Schrödinger equation, which we call for rest of the paper only the Schrödinger equation or shortly the 
SchE:

 −
ℏ2

2m
d2x 
d x2

V x =E x                                   (1)

provides a general method:

• determining wavefunctions representing time independent stationary states, called the energy 
eigenfunctions.

• finding corresponding energy levels, eigenvalues. 

For modeling purposes we can rewrite Eq. (1) into the simplest numerical version of the SchE. If we 
divide the  x axis into many equally spaced discrete points and use one of definitions of the second 
derivative:

d2x 
d x2

= lim
 x0

 x x−2 xx− x 
x 2

we get its finite-difference approximation:
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d2x 
d x2

≈
x x −2x  x− x

 x2

leading to a numerical version of the SchE:

x x =2 x− x−x − 2m x2

ℏ2
[E−V x ]x                          (2)

used and appropriate for modeling in introductory quantum mechanics courses. 

II. MAKING A MODEL FOR STATIONARY STATES: 
HEURISTIC DERIVATION OF THE SCHRÖDINGER EQUATION.
Let's go pay attention to basic steps of a teaching material in our quantum mechanics course. The 
pedagogical query is how students make a model for stationary states or in other words how they 
heuristically discover the Schrödinger equation (2) in terms of Feynman's approach.   

Initial knowledge of students

Student's starting knowledge before finding the model (the SchE) is:

• fundamental principles of Feynman's approach (see e. g. [7], [2] or [3])

• approximations  of  sin  and cos  functions;  there  is  an  elementary  geometrical  high  school 
argument  based  on  the  Phytagorean  Theorem  proving  that  for  small  angle    
sin≈ ,cos≈1−2/2 .

• shape of the wavefunction at some fixed moment  t of particles emitted from a source of a 
completely  coherent  character  with  very  precise  emission  energy  E.  This  wavefunction  is 
known for students from one of our previous tutorials as a result of fundamental principles 
and it  is  a set  of  quantum arrows – one for  each discrete  point  along  x axis  –  satisfying 
conditions described by fig.1. 

If students explore wavefunction faraway from the source, the wavefunction is their first example of 
stationary  state  wavefunction.  In  this  wavefunction  students  can  recognize  a  repeating  pattern. 
Particularly after a certain distance the direction of arrows repeats. What is this distance? Using the 
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Fig.  1: The vawefunction  of  particles emitted from a coherent source  with energy E.  Each arrow 
x  according to the fundamental principles represents an arrow for outcome - finding emitted  

particle at given place whereas square of the arrow's length is probability of this outcome. In addition  
any arrow makes extra number of rotations with respect to quantum arrow of the source given by the  

expression: number of
rotations =1h p⋅ distance

from the source  , where 2mE=p2  and h is the Planck constant.
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expression for rotations of arrows:  numberof rotations = 1
h p⋅x  , we can find that mentioned distance 

for one turn of the arrow along x axis has to satisfy a condition:

1=oneturn=1h p⋅ distance
for one turn                           (3)

Such behavior is similar to behavior of waves. And Eq. (3) is nothing else as a restatement of the well-
known de Broglie  relation  =h / p ,  where  de  Broglie  wavelength    is  just  the  distance  for  one 
arrow's turn along space and p is connected to energy of particles by expression p2=2m E .

Local description of the de Broglie wave

To make next step to the required Schrödinger equation (2), students also find a local description of 
the de Broglie wave – the equation describing behavior of wave function arrows in a small region at 
any place. Such situation in vicinity of some specific point x is depicted in fig.2 .

If we put tails of these three arrows to one common point, then from the previous global description 
of the de Broglie wave we know that angles between arrows whose tails are equally spaced through 
 x  must be the same and equal to =2 p /h x= p /ℏ x . Since  x  is taken very small, angle 
 x  is also small. The arrows geometrically form a parallelogram of which one diagonal includes the 

middle arrow  x   and the second diagonal is perpendicular with it as it is shown in Fig. 3. 

This situation is only possible if vector average of outer arrows is scalar multiple of the middle arrow 
and from the formed right triangles we see the constant of this multiplication is nothing else as cosine 
of angle  :

x x− x− x
2

=x cos
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Fig. 2 

Fig . 3 
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Since angle    is very small, it is time to apply small angle approximations of cosine which yields the 
equation:

x x− x− x
2

=x 1−2

2  , where 2= p
ℏ 

2

 x2=
2m E x2

ℏ2
.

After two simple arrangements (multiplication and subtraction) of both sides of the last equation, we 
get a numerical version of the SchE for free particles:

   x x=2x −x− x −
2m x2

ℏ2
E x            (4)

This  equation  expresses  simultaneously  the  condition  of  stationarity  of  the  free  particle's 
wavefunction. 

Generalization to varying potential energy

Now we can make heuristic generalization for case with arbitrary reasonable physical potential energy 
function  V(x).  In any small  region around a given point  x  the potential  energy V(x) is  practically 
constant and we could consider the particle as a free particle with kinetic energy E−V x= p2/2m . In 
that case we can apply the same consideration as before, but with adjusted momentum  p  given by 
p2=2m[E−V x] .   The  result  is  the  simplest  numerical  version  of  the  Schrödinger  equation  in 

general case 

x x =2 x− x−x −
2m x2

ℏ2
[E−V x ]x                      (5)

mentioned earlier – Eq. (2)  at the beginning of the paper. But now it  was obtained without using 
derivatives, limits or differential equations. Students used only high school elementary vector algebra 
and the Pythagorean Theorem. 

Equation  (5)  is  mathematically  much  simpler  than  differential  version  of  SchE  (1).  If  we  know 
potential energy function V(x), values  and m and we specify the values of E and  x , then given any 
two neighboring values of wavefunction  x , mathematically complex numbers and geometrically 
ordinary arrows, we can find by elementary operations all  remaining values - the whole list  of all 
discrete points along the x axis.  This means that this process of constructing wavefunctions is simple 
(no  differential  calculus  or  complex  numbers)  and  universally  applicable  providing  an  excellent 
foundation  for  computer  modeling.  Moreover  nowadays  personal  computers  are  sufficient  for 
pedagogical purposes so there is no need for fancy algorithms. To be more precise we need to take 
only very small step  x .

III. COMPUTER MODELING: FINDING EIGENFUNCTIONS 
       AND ENERGY LEVELS BY A SPREADSHEET
After the heuristic derivation of the Schrödinger equation (2) students start with computer modeling 
through a spreadsheet to get intuition and direct experience for stationary wavefunctions – states in a 
a wide range of one-dimensional potential energy functions. We use Microsoft Excel or Open Office 
Calc spreadsheets. 

Here is a short description of our Excel file Schroedinger.xls and its sheets used by our students. The 
first sheet of the file includes basic constants and parameters used in modeling. In the second sheet 
students can interactively change and study corresponding potential energy diagram. The first studied 
bound system is a potential well  with finitely tall  walls.  The height of the walls  can be manually 
changed to get a variety of situations. 

The third sheet is a modeling sheet, where besides table of spatial parameters of a system, potential 
energy diagram students can see the wavefunction diagram (fig. 4).  How do students use this sheet?

Jozef Hanc ......................................................MPTL 11, Szeged, 20065
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Since  in computer  modeling we were inspired by excellent  Thomas Moore's  course  Six Ideas  that  
shaped physics [5], the use is very similar to Thomas Moore's ideas explained in detail in [5], so I shall 
outline only the main idea. If a student starts with zero energy level (sheet cell the total energy E), then 
according to the wavefunction diagram the resulting wavefunction generated by SchE (5)  goes to 
infinity.  (Students have to have in their minds that the diagram in reality includes arrows and for 
simplicity we do not display the whole arrows, but only their tips creating the blue curve in fig. 5.)  

It is an unrealistic situation from two important reasons. In the right part of space in the wavefunction 
diagram  such  wavefunction  would  imply  infinite  probability  of  finding  particle  in  the  classical 
forbidden region, which is clearly absurd. The second important reason is symmetry of the situation, 
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Fig. 4: A screen shot of Schroedinger.xls

Fig. 5 
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which  intuitively  requires  a  symmetric  wavefunction.  It  means  the  wavefunction  should  be  zero 
faraway on the right side. If student increases the total energy, he sees that, if the energy is still small 
the wavefunction “overshoots” zero value as x∞ . If energy is too big, the wavefunction goes to 
minus infinity on the right side. In other words it “undershoots” the condition that it must go to zero 
as x∞ .

By playing, technically called the shooting method standardly used in textbooks based on modeling, 
e.g.  [1] or [5],  students found such value of  energy level to get the right stationary wavefunction. 
Using the spreadsheet students can find out all bound states with corresponding energy levels. Fig. 6 
shows first four states obtained by this shooting method in Excel .

During this process students also obtain appreciation why energy is quantized and why in a quantum 
mechanical bound system like potential well a particle cannot have zero energy, which means that the 
ground state energy is always positive. As precise calculations show it is easy to reach an accuracy 
better than 1%. 

When  students  understand  the  crucial  idea  of  a  quantum  mechanical  mechanism  for  modeling 
stationary states, later it is more effective and less tedious for students to use a prepared computer 
program applying the same algorithm as the spreadsheet file.  In our case to  this moment we use 
Thomas  Moore's  piece  of  software  (fig. 7)  called  SchroSolver  [5],  which  allows  to  explore  many 
situations  in  other  different  one-dimensional  potentials.  These  physically  not  simplified,  but 
mathematically simple means allow to cover practically majority of themes of introductory quantum 
courses dealing with stationarity states. 

Finally  all  these  tutorials  lead  students  to  develop  essential  prerequisites  -  skills  to  learn  doing 
qualitative plots – sketching wavefunctions as it is done with applications of the quantum technology 
in Witttman at el. Activity based Modern Physics tutorials [9].
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Fig. 7: A screen shot of Thomas Moore's SchroSolver program 
for modeling stationary states


