
FU Berlin Germany

 

 

 

10th Workshop on
Multimedia in Physics Teaching and Learning

Freie Universität Berlin
5-7 October 2005

 
Latest News
 
Report on the workshop for Europhysics News 3/37 2006 (pdf)

(August 2006)

 

4th circular appeared: pdf - doc
(September 16, 2005)

 

Assignment of Poster Session A and B
(September 15, 2005)

 

Registration closed
(August 29, 2005)

 

Tentative Schedule of the Program
(July 6, 2005)

 

3rd circular appeared: pdf - doc
(July 5, 2005)

 

Deadline for application of Young Scientist Fund is July 15, 2005. 
(June 27, 2005)

 

EPS Action Committee on Conferences agreed to grant MPTL 10
by 2 Young Physicist Fund support (EUR 350.- each). For further
details see 2nd circular. Please contact the local organizer to apply
for.

(May / June 2005)
 

2nd circular appeared: pdf - doc
(May 09, 2005)

 

MPTL 10 has been recognized as an Europhysics Conference by 
the European Physical Society (EPS)

 (March 31, 2005)
 

1st Circular appeared: pdf - doc
       (January 05, 2005)

 

 http://pen.physik.uni-kl.de/w_jodl/MPTL/MPTL10/



Use of a computer in advanced mechanics – Principle of least action

Slavomir Tuleja∗
Gymnazium arm. gen. L. Svobodu, Humenne, Slovakia

Edwin F. Taylor†
Massachusetts Institute of Technology, MA, USA

Jozef Hanc‡
Technical University, Kosice, Slovakia

(Dated: February 20, 2006)

The ActionClockTicks application is a simple interactive Java program that enables students
to hunt for the worldlines of stationary action in several different scenarios ranging from a simple
projectile motion in uniform gravitational field to a Moon shot. It is meant only as a proto-
program for a general-purpose interactive software by means of which the students could create new
scenarios of their own and apply one of the simplest and most powerful expressions of the classical
mechanics—Principle of least action. We describe the numerical method for finding the worldline
that has stationary action.

I. INTRODUCTION

Principle of least action is a very useful theoreti-
cal tool that except explaining Newton’s second law1

and Lagrange’s equations,2 links conservation laws and
symmetry3. In addition it offers a way for a seam-
less transition from quantum mechanics to classical
mechanics4.

Unfortunately it is introduced only late in the curricu-
lum. One of the obstacles for its earlier introduction is
the mathematical complexity of variational calculus in-
volved in its formulation. By contrast, the principle itself
is conceptually simple.

In what follows we provide the mathematical formu-
lation of the variational problem and show a possible
strategy of how to avoid the mathematical complexity
exhibited by its traditional solution.

II. USING ACTION TO PREDICT MOTION

A. Mathematical formulation of the problem

Suppose the motion of a single particle is restricted to
a plane. To find the worldline that takes the particle from
an initial event P to a final event Q using the principle of
least action, one has to compute a number called action
for each possible worldline connecting events P and Q.
Action is defined as the functional:

S =
∫ tQ

tP

L [x(t), y(t), vx(t), vy(t), t] dt,

where

L [x(t), y(t), vx(t), vy(t), t] = K [vx(t), vy(t)]−U [x(t), y(t)]

is the Lagrangian.
From the infinite number of possibilities the particle

chooses the worldline connecting the starting and final

FIG. 1: Worldline in spacetime connecting the initial and
final events P and Q. The black bold curve represents the
real worldline taken by the particle. The two brown curves
represent two close worldlines with almost the same action.

events in spacetime for which the action S is stationary.
It means that the action along any close trial worldline
must be approximately the same as shown in Fig. 1.

The problem of finding the stationary-action worldline
is usually addressed using rather advanced methods of
variational calculus5. We aim to show an alternative ap-
proach to finding such worldline. We use computer as an
aid.

B. Visualization of worldline

Before we start we need to solve a problem of com-
puter visualization. How can we draw a worldline in
two-dimensional space? Notice that one trajectory can
represent many worldlines, as shown in Fig. 2! Trajec-
tory tells us nothing about particle’s speed. It tells us
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FIG. 2: Particle trajectory in space. There are infinitely many
worldlines corresponding to this trajectory. For example the
particle could travel with constant speed along the entire tra-
jectory, or it could change its speed continually—being slow
in curved portions of the trajectory and fast in the almost
straight portion. Therefore trajectory tells us nothing about
particle speed.

only which points in space it was in, but doesn’t tell us
when.

One possible solution is to provide timing for the par-
ticle. Imagine the particle carries a clock making short
clock ticks spaced equally in time. Each of the clock ticks
can be regarded as an event. Draw the two-dimensional
trajectory in space along with the dots representing the
clock-ticks as shown in Fig. 3. The clock-tick dots tell us
indirectly what the particle velocity was in different por-
tions of its trajectory. The smaller the clock-tick interval,
the better.

C. Finding of the stationary-action worldline on a
computer

To represent such worldlines on a computer we have to
make a small sacrifice. We approximate worldline seg-
ments between adjacent clock ticks by straight lines. The
particle will have a definite velocity along each straight
segment of worldline (and trajectory). The resulting tra-
jectory is shown in Fig. 4.

We can compute action for the trajectory as the sum
of actions along its segments (numbered 1, 2, ..., n):

S =
n∑

i=1

∆Si.

Denote

x̄i =
xi−1 + xi

2
, ȳi =

yi−1 + yi

2
,

FIG. 3: Trajectory with imaginary stopwatch clock-ticks. The
clock-ticks help us in seeing what the speed of the particle was
in different portions of its trajectory. They provide timing
for the particle. Numbered dots 0, 1, ..., 7 represent clock-tick
events.

v̄xi =
xi − xi−1

∆t
, v̄yi =

yi − yi−1

∆t
,

and

t̄i = ∆t

(
i− 1

2

)

the average x and y coordinates on the segments and the
velocity components on the segments. Resulting expres-
sion for action can then be written as

S =
n∑

i=1

L (x̄i, ȳi, v̄xi, v̄yi, t̄i)∆t.

Thus action S becomes a function of x and y positions
of the intermediate clock-tick events

S = S(x1, x2, ..., xn−1, y1, y2, ..., yn−1).

How can we now find a trajectory of stationary action?
To find it, means to find such a set of x and y positions
of intermediate events, that making a small change in
value of any of them results approximately in no change
in action. This is equivalent to demanding the following
2n− 2 conditions being satisfied:

∂S

∂xi
= 0, i = 1, 2, ..., n− 1

∂S

∂yi
= 0, i = 1, 2, ..., n− 1
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FIG. 4: Worldline approximated by connected straight seg-
ments as represented in the computer. Computer restricts
itself only to this class of trajectories.

FIG. 5: A screen shot of the Java application ActionClock-
Ticks we programmed to make searching for the stationary-
action worldline interactive. The scenario shown on this
screenshot is “Satellite motion”. To make action stationary a
user can either click-and-drag the intermediate clock-ticks of
the trajectory or press the HUNT button. The later starts
automatic search for stationary action.

The conditions have the form of the simultaneous sys-
tem of 2n−2 equations with 2n−2 unknowns. In general

FIG. 6: This screen shot depicts the “Moon shot” motion
scenario. The heavy black line with red dots is the spaceship
trajectory with clock-ticks. The upper series of gray dots rep-
resents the Moon in different times. The blue dot in the center
is the Earth. User first chooses the total time for motion us-
ing the slider at the bottom control panel of the applet. Then
(s)he chooses the initial and final points on the trajectory.
Finally (s)he hunts for the stationary-action worldline taking
the spaceship from Earth to Moon.

this system is nonlinear and can be solved by Newton’s
iteration method generalized for functions of more vari-
ables. This is what is actually done in our interactive
Java program described in the next subsection.

D. Interactive software

Fig. 5 shows a screen shot of the Java application6

we created for students. The program allows them to
find the worldline of stationary action either manually
or automatically as they explore different motion scenar-
ios. The scenarios are (1) the projectile motion in the
uniform gravitational field near Earth, (2) the satellite
motion near Earth, (3) the motion of a particle in po-
tential U(x, y) = ky2, and (4) the Moon shot (see Fig.
6).

III. CONCLUSIONS

We have created a simple software that enables stu-
dents to predict two-dimensional motion of a particle.
The student can make such predictions using an alter-
native to Newton’s laws of motion, namely the Principle
of least action. The principle is little known because
mathematical competence required from the student if
he wants to apply it to predict motion (in a traditional
way) is rather complex.

However, today the computer offers a new approach
to predicting particle motion using the principle of least
action. Such approach was outlined in this paper. We
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were successful in replacing the mathematical complex-
ity of variational calculus (1) by its reduction to simple
calculus of functions with many variables and (2) by hid-
ing even this simpler mathematical approach “under the
hood” of the computer. Thus everything the student
needs is the conceptual understanding of the Principle of
least action and a sound ability to work with a computer.

The Principle of least action has an important role
in later theoretical courses, one of them being quantum
mechanics. The approach outlined in this paper can be
used early7 in physics instruction to introduce students

to the concept of action.
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