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What is the action model? Introducing and modeling 
principles of least action.  
 
Jozef Hanc10 
Institute of Physics, P. J. Safarik University in Kosice, Slovakia,  

Abstract 
The Action Principle predicts motion using the scalars energy and 
time, entirely avoiding vectors and differential equations of motion. 
Action is the tool of choice when we want to specify both initial and 
final conditions. Maupertuis-Euler action finds the trajectory when 
initial and final positions are prescribed in advance, but requires that 
energy be a constant of the motion. Hamilton action finds the worldline 
when initial and final events are prescribed in advance and easily 
describes motion when potential energy is a function of time as well as 
position. A simple toolkit of motion tells us when to use action, when 
to use Lagrange's equations, and when we must return to the vector 
methods of Newton. The original Euler method of handling action also 
provides a basis for computer modeling. Interactive software allows 
students to employ basic concepts of the principle of least action and 
increase conceptual understanding.  

Least action approach in teaching 
The least action principle approach, so important for modern physics, is 
widely considered to be a difficult topic and is usually only used in 
advanced mechanics textbooks and courses. Why does it seem a peculiar 
way to introduce and teach classical mechanics? Why is action as a 
physical quantity understood as being very abstract and unsuitable for 
introductory physics, despite the fact that it is a scalar very similar to 
energy − one of the central concepts of introductory courses? 

The reasons are that in the majority of standard advanced texts [like 
Landau & Lifschitz 1976, Goldstein et al 2002, Marion & Thornton 2003, 
Hand & Finch 1998], ⎯ (1) the mathematics used is the calculus of 
variations, which is not part of the common mathematical toolkit 
acquired at introductory college level; (2) action is usually introduced 
extremely briefly and is only used for a quick variational derivation of 
Lagrange’s equations; (3) action is not immediately illustrated by 
examples; texts typically include no or a very few examples; (4) there is 
also no study of the properties of action after introducing it, since they are 
taught at the end of courses and texts, (5) and finally you find no 
computer modeling, which means that students cannot obtain direct 
experience and intuition.  

So the important question is how to introduce least action principles? 
Our experience says that it is possible in the frame of introductory 
courses provided that we concentrate on the following crucial issues: 

                                           
10email: <jozef.hanc@upjs.sk> 
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• Starting with one dimensional cases and using a powerful 
graphical language. More general cases only bring in more 
complicated mathematical expressions, but essentially nothing new 
in physics ideas 

• Using concrete, but easily generalizable examples. We have 
chosen Newton’s falling apple, but the arguments will work for any 
reasonable potential energy function. 

• Building a clear connection to Newton’s laws in terms of 
comparison.  

• Using ingeniously simple original arguments of the greatest 
physicists and mathematicians of all times: (1) Newton’s argument 
from his celebrated Mathematical Principles of Natural Philosophy 
(1687) and (2) Euler’s argument from his pioneering work on the 
variational calculus The method of finding curved lines enjoying 
properties of maximum or minimum (1744). As result we will not 
need advanced mathematics (all arguments require only high 
school algebra such as expressions (a ± b)2 and basic properties of 
parabola). Moreover we also obtain an excellent foundation for 
computer modeling, which is important in getting good intuition 
and experience.   

 
So how does classical mechanics explain the motion of a falling 

apple? We will show three different approaches − tools for answering this 
question: Newton’s laws, Hamilton’s and Maupertuis’ principle of least 
action. As we will see below, together they form a simple toolkit of 
mechanics in which the question being asked about any system 
determines directly which tool should be used to predict the motion of 
that system. 
Motion of a falling apple from different points of views 

Newton’s laws of motion 
We start with the well-known Newton’s laws of motion, which are 
already taught at high schools. Firstly Newton says: “Give me the initial 
state of the apple, which means the initial position and velocity of the 
apple”.  

However giving the initial velocity and position means 
experimentally measuring two nearby positions at very close instants. In 
this case the initial (and indeed any) velocity is graphically nothing else 
than the slope of the position vs. time graph, or in the language of 
spacetime physics the slope of the apple’s worldline.  

Then Newton offers us his laws of motion and answers the 
questions: What happens next with the apple? That is, what is the position 
of the apple at the next instant, if there is Earth’s gravity or in general 
some force F (see fig.1)?  

 



 239

 

 

 

 

 

 

 

 

 

 

Figure 1. Newton’s laws answer the question what is the position of the apple at the 
next instant, if we know the initial velocity and position or in other words, we know 
two very nearby positions of the apple.  

 
If there were no acting force, then according to the first law of 

motion, the principle of inertia, the apple would continue in motion at the 
same velocity, so graphically it would follow a straight-line worldline 
(see fig.2). Instead Earth’s gravity (or generally some force F) causes a 
component of motion in the direction of the applied force, as described by 
the second law of motion, the momentum principle mΔv = FΔt. 
Competition between these two tendencies results in the parallelogram of 
which the diagonal represents the worldline of the actual motion (fig.2).  

 
Figure 2. According to Newton’s laws the motion of the apple is produced by two 
“effects”: the apple’s inertial motion at constant velocity, if no forces act upon it and 
the motion due to an acting force F. The net motion is then given by the diagonal of 
the parallelogram of the separate motions that would have occurred.  

 
This process of constructing worldlines (which is conceptually the 

same for trajectories) is simple, repetitive and universally applicable, so it 
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provides a first-rate foundation for computer modeling. Since today’s 
computers are very fast there is really no need for fancy algorithms in 
introductory physics teaching. To get a better approximation to the actual 
motion we simply take smaller time steps.  

This numerical method appears in some classics physics texts 
notably in Chapter 9 in Vol.1 of Feynman’s lectures on physics (1964). 
But it is also very effectively applied in the modern introductory physics 
curriculum, e.g. in Modern Mechanics of Chabay and Sherwood (2002) 
or in Unit N of Moore’s Six Ideas That Shaped Physics (2003). 

Hamilton’s principle of least action 
Now we apply a first action model to our falling apple based on energy 
concepts and Hamilton’s least action principle. Hamilton tells us: “Give 
me both initial and final positions and times of the apple,” called in 
spacetime physics events. If we specify the initial and final events in 
advance, then Hamilton’s principle can successfully answer the following 
question: What is the middle event for the apple? Or which worldline is 
followed by the falling apple between the initial and final events, if the 
apple has potential energy U(x) (see fig.3)? 

 

Figure 3. Hamilton’s principle answers the question what is the middle position or 
more generally the middle event for the apple, if we know the apple’s initial and final 
events. 

 
Now what special property does the actual worldline obey? The 

principle of least action discovered by Hamilton says that the apple 
follows the worldline for which the average kinetic energy minus the 
average potential energy is as little as possible or put more briefly 
worldline has the least action, because Hamilton’s action S is defined as  
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Using integral calculus the definition (1) has the form  
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final
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final
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t
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t

t

LdtdtUKS )( ,                             (2) 

where the difference K − U is called the Lagrangian L, the quantity that 
appears in Lagrange’s equations of motion. 

In the case of our falling apple (and also in general case for small 
Δt) it is easy to calculate all terms in the expression (1) for action S along 
any worldline 012 (fig. 3). The time duration tfinal − tinitial equals 2Δt. The 
average kinetic energy 〈K〉 is given by (KA + KB)/2, the average of kinetic 
energies for the first and second segment of the worldline, that is, by 
(1/2)(mvA

2/2 + mvB
2/2), where vA = (x1 − x0)/Δt and vB = (x2 − x1)/Δt. 

We now have to pay attention to the potential energy U(x). The 
shortness of Δt allows us to approximate U(x) by a linear function Cx in 
the region near point 1. (An additive constant is not important, because it 
is always zero after an appropriate choice of a reference point.) For the 
apple constant C is positive and equals mg. Generally we will consider it 
here as some positive constant. From the viewpoint of the force concept 
used previously in Newtonian analysis it represents a force F = − 
ΔU/Δx = − CΔx/Δx = − C, a force in the downward direction. Then 〈U〉  
equals (UA + UB)/2 = (1/2)[C(x0 + x1)/2 +C(x1 + x2)/2]. Since the events 0 
and 2 are fixed and only position of the middle event 1 is variable, the 
apple’s action S must be only a function of x1, in which case it is a 
quadratic function.  

To find a worldline with the least action therefore means that we 
must vary and find a position x1 which makes the action a minimum. 
There are two natural ways to do this. One is the trial-and-error method, 
perfectly suited for a computer which can quickly calculate and compare 
the action (1) for millions of worldlines. The detailed description of 
computer modeling based on the so-called Euler variational method is 
described in our symposium contributions Action on Stage (see fig. 1, 2) 
and Use, Abuse, and Unjustified Neglect of the Action principle (see fig. 
1).  

The second way to find the least action worldline is the use of 
mathematical methods. According to Hamilton’s principle the action has 
to become larger, if we change the position x1 of the middle event 1 of the 
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actual worldline by any small displacement δx. Using only high school 
algebra one can obtain the following expression for the corresponding 
change in action:  

( ) 2
11 )(2)()( x

t
mxtFvmxSxxSS δδδδ
Δ

+Δ−Δ=−+=         (3) 

Mathematically equation (3) represents a simple quadratic function with 
respect to δx whose graph is a parabola. The graphical method proves that 
the least-action worldline is identical with the worldline predicted by 
Newton’s laws (fig. 4). The method gives students an intuitive and visual 
understanding of the meaning of the least action principle, as does the 
computer modeling described earlier.  

      
Figure 4. Both parts of the figure display changes in action with respect to 
displacement δx. In the left part the linear term in eq. (3) is not zero, i.e. 
mΔv−FΔt ≠ 0. The action demonstrates both negative and positive changes, so the 
chosen worldline does not yield a minimal action. In the right part the condition that 
the linear term be zero, mΔv−FΔt = 0, gives a required minimum.  

Maupertuis’ principle of least action 
Finally we will analyze the apple’s motion from the viewpoint of the 
second least action principle called Maupertuis’ principle of least action. 
Maupertuis requires: “Consider a conservative system. Give initial and 
final position and total energy of the system.”  
 The total energy and its conservation (we again assume knowledge 
of the potential energy), lead to knowing the apple’s initial speed, which 
implies two possibilities of motion − with the upward or downward 
direction. But in the case of the falling apple we are interested only in the 
downward motion. Then according to Maupertuis we are able to answer 
the question: “What is the apple’s final event, if we know its initial and 
final positions (see fig. 5)?” 

δS > 0
δS > 0

δx 

δS

δx

δS 

δS < 0 

δS > 0 
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Figure 5. The Maupertuis action principle can answer the question “What is the 
apple’s final event, if we know its initial and final positions?” 
 

Since we consider a conservative system the actual motion of the 
apple must satisfy energy conservation. From Newtonian mechanics we 
know that it is the same motion as predicted by Newton’s laws. 
Everything seems to be good. So the natural question arises: where is the 
action principle? But we now see that we did not realize that energy 
conservation alone actually allows other worldlines, strange and 
unrealistic with respect to Newton’s laws. One example is shown in fig. 
6. How to recognize a motion as actual or unrealistic?  

The criterion is just the Maupertuis action. It can be shown in a very 
similar way as in Hanc et al. 2005 that a useful graphical tool in the case 
is the velocity vs. position diagram called in mechanics the phase 
diagram, which says that for unrealistic worldlines the area under the 
phase curve is always bigger than for the actual one. This geometric idea 
provides a foundation for the definition of the second version of action, 
Maupertuis action W: 
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Summarizing we can say that Maupertuis’ principle of least action tells 
the falling apple to move so that the product of mass and area under the 
phase curve has the smallest possible value (subject to energy 
conservation). So far as computer modeling is concerned, it is the 
problem as before. 
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Figure 6. Both depicted worldlines 010 and 010’1’2’ satisfy energy conservation, but 
only one describes the real motion.  
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