
Cover figure: A piezoelectric bimorph transducer with its connecting wires that is sensitive to
whether it is immersed in a gas, liquid or solid. See the article on page 197.
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In the book Surely You Are Joking, Mr. Feynman! Richard Feynman tells a story of a Cornell
cafeteria plate being tossed into the air. As the plate spun, it wobbled. Feynman noticed a relation
between the two motions. He solved the motion of the plate by using the Lagrangian approach. This
solution didn’t satisfy him. He wanted to understand the motion of the plate by analyzing the motion
of its individual particles and the forces acting on them. He was successful, but he didn’t tell us how
he did it. We provide an elementary explanation for the two-to-one ratio of wobble to spin
frequencies, based on an analysis of the motion of the particles and the forces acting on them. We
also demonstrate the power of numerical simulation and computer animation to provide insight into
a physical phenomenon and guidance on how to do the analysis. © 2007 American Association of Physics
Teachers.
�DOI: 10.1119/1.2402156�
I. INTRODUCTION

One day Feynman was sitting in the Cornell cafeteria
when someone tossed a dinner plate into the air.1 The plate
had a university seal imprinted on the rim. As the plate spun,
it wobbled. While Feynman watched the seal on the rim, he
noticed that the spin and the wobble were not in synchrony,
but were related. He had nothing to do, so he started to
analyze the motion of the plate using the Lagrangian
approach.2 The equations were quite complicated, but he dis-
covered that, when the wobble was small, the equations pre-
dicted that the plate would wobble twice as fast as it would
spin.3

He was not satisfied with this explanation of the two-to-
one ratio and wanted to understand it by looking at the el-
ementary dynamics. In his account of the story Feynman
says that he does not remember how he did it, but that he
ultimately worked out the motion of the particles of mass in
the plate, showing how their accelerations balanced to make
the ratio of wobble to spin frequencies come out two to one.4

Feynman reported that the experience of solving the mo-
tion of the wobbling plate was important in returning him to
physics research after his wartime experience at Los Alamos.
He thought he was burned out and would never accomplish
anything again, so he decided just to play with physics. He
said it was “piddling around” with the wobbling plate that
brought him to thinking about electron orbits in relativity,
then to the Dirac equation, and finally to the research for
which he was awarded the Nobel Prize.

In this paper we present what might be close to Feynman’s
forgotten elementary explanation of the two-to-one wobble
to spin ratio. Unlike Feynman, we will use computer simu-
lation and animation to discover the simple character of tra-
jectories of individual particles of the thrown plate. Then we
will show how the two-to-one wobble to spin ratio emerges
as a direct geometrical consequence of the motion of the
particles that make up the plate. Finally we will use elemen-

tary Newtonian mechanics to account for particle motion.
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II. TRAJECTORIES OF INDIVIDUAL PARTICLES
DISCOVERED

The motion of the plate thrown into the air can be ob-
served by throwing the plate with a mark on its rim. It is
difficult to see much in such an experiment because the mo-
tion is fast and brief. It is possible to see that wobbling is
faster than rotation, but the conclusion that it is approxi-
mately twice as fast is difficult to reach. Ordinary video
analysis can greatly improve our insight and can lead to the
desired conclusion about the frequency ratio. But the video
analysis didn’t give us any clue on how the individual par-
ticles of the plate actually move. Therefore, to discover their
motion we used computer modeling and visualization in-
stead.

We wrote the Lagrange equations for the torque-free mo-
tion of a thin rigid disc with fixed center of mass to represent
the cafeteria plate,5 disregarding the irrelevant motion of its
center of mass. To visualize the motion predicted by these
equations, we wrote a Java applet that solves the resulting
differential equations for the plate numerically and animates
its motion �see Fig. 1�.6

The applet displays the unit orthogonal axes vectors x̂1, x̂2,
and x̂3 fixed in the plate with their origin at the center of
mass of the plate and x̂3 perpendicular to the plate �see Fig.
1�. Because we want the end points of the axes vectors to be
visible in the animation, we arbitrarily chose their length to
be a bit longer than the radius of the plate. The plate is
stationary in the reference frame defined by these vectors.
The motion of the tips of x̂1 and x̂2 trace out the motion of
the particles of the plate.

In what follows we summarize our observations of the
computer animation. We recommend that readers play with
the applet independently and reach their own conclusions.
Our online materials are on EPAPS.6 To obtain more insight
into the features of the motion of the plate, we suggest that
you follow the “Student exercises for the computer model”
link, which opens a set of exercises devised for the applet.

The animation shows that as the plate wobbles, the x̂3
vector traces out a cone as its tip moves around a small

circle. We call the half-angle of this cone the angle of wobble
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and denote it by �. What is surprising is the character of the
motion of the vectors x̂1 and x̂2. When the angle of wobble is
small, the tips of x̂1 and x̂2 move along almost circular tra-
jectories with a common origin at the center of mass of the
plate, lying in slightly different planes �both at angle � with
the horizontal plane� and intersecting at only two points, as
shown in Fig. 2. When the angle of wobble is not small, the
tips of x̂1 and x̂2 trace out curves that are not closed. The
smaller the angle of wobble, the closer the traces are to
circles.

III. GEOMETRICAL EXPLANATION OF THE
FREQUENCY RATIO

We provide here an explanation for the two-to-one wobble
to spin frequency ratio based on a knowledge of the trajec-
tories of the individual particles of the plate that was pro-
vided by our animation. In other words we will show that
once the tips of x̂1 and x̂2 move on the circles described in
Sec. II, the plate must wobble twice as fast as it rotates. This
motion is a consequence of the fact that x̂3 is always perpen-

ˆ ˆ

Fig. 1. Screen shot of the Java applet that animates the motion of the plate.
The unit vectors x̂1, x̂2, and x̂3 are fixed with respect to the plate. The circle
on the rim represents the seal. The user sets the initial conditions of the plate
motion using the sliders at the bottom �Ref. 7�.
dicular to x1 and x2.
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We first examine the left column of Fig. 2, which displays
a series of three sequential snapshots of the plate depicting a
quarter-period of its spin. The frequency of motion of the tip
of x̂3 on its small circle is what we call the frequency of
wobble. The frequency of motion of the tips of the vectors x̂1
and x̂2 on their large circles is the frequency of spin. What is
the ratio of these two frequencies?

Denote by Tspin the spin period of the plate. Start at time
t=0 with the plate in the position shown in Fig. 2�a�. The tip
of x̂1 is in the front intersection point of the circles, lying in
the horizontal plane. The tip of x̂2 is 90� ahead on its circle,
tilted slightly downward. The x̂3 vector is always perpen-
dicular both to x̂1 and x̂2, and hence its tip has to be situated
on the east side of its small circle.

At time t=Tspin /8 the tip of x̂1 has moved 45� on its circle,
as shown in Fig. 2�b�, and points slightly above the horizon-
tal plane. The tip of x̂2 has also moved 45� and is pointing
slightly below the horizontal plane. Because x̂3 is again per-
pendicular both to x̂1 and x̂2, its tip must be at the north side
of its small circle.

At time t=Tspin /4 the tip of x̂1 has moved an additional 45�

on its circle, as shown in Fig. 2�c�, and its tip is located at the
east side of its circle, in a position highest above the hori-
zontal plane. The x̂2 vector is at the north side of its circle,
positioned at the back intersection point of the circles and
pointing horizontally. Therefore the tip of x̂3 must be at the
western side of its small circle.

We could further track the motion of the plate, but we can
already draw conclusions from what we have seen so far.
During a quarter of the spin period of x̂1, the tip of x̂3 has
traced half of its circle, and therefore it is moving with
double the frequency of vectors x̂1 and x̂2. The frequency of
wobbling is twice as high as the frequency of spin.

The reasoning in this section is simple and qualitative. It is
straightforward to use vector algebra to show that if the tips
of x̂1 and x̂2 move uniformly on their circles, then the tip of
x̂3 moves uniformly on its small circle with twice the
frequency.8

IV. WHY CIRCLES?

Thus far we have discovered that if the tips of x̂1 and x̂2
move on the circles we have described, then the plate
wobbles twice as fast as it spins. But we haven’t explained
why the tips of x̂1 and x̂2 must move on such circles. Our
strategy will be to investigate the accelerations of the tips of
x̂1 and x̂2 to show that when the angle of wobble is small,
their tangential components vanish. Consequently the tips of
x̂1 and x̂2 move uniformly on circles. To derive this result we
start with Newton’s laws of motion.

A. Acceleration balance

Let the mass of the plate be M and its radius R. Each mass
element dm of the plate with position vector r experiences a
net force dF exerted on it by neighboring particles and grav-
ity. The relation between the force and the corresponding
acceleration a= r̈ determined by this force is given by New-
ton’s second law:

dF = r̈dm . �1�

We know that because the external gravitational forces

acting on the mass elements of the plate can be replaced by a
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the velocities of the tips.
net gravitational force acting at its center of mass, there is
zero torque acting on the plate relative to the center of mass:

� =� �
all the mass elements

r � dF

=� �
all the mass elements

r � r̈ dm = 0 . �2�

The position vector of the mass element dm shown in Fig.
3 can be expressed as

r = r cos � x̂1 + r sin � x̂2. �3�

If we differentiate Eq. �3� twice with respect to time, we
obtain an expression for the acceleration of the mass element

¨ ˆ̈ ˆ̈

Fig. 2. Left: Three sequential snapshots of the plate separated by an eighth
the front and back intersection points of the orbits followed by the tips of the
x̂2, it must follow a circular path with twice the frequency. The directio
corresponding to the snapshots on the left. The vectors v1 and v2 represent
-period of its spin �a quarter-period of its wobble�. The two black dots represent
vectors x̂1 and x̂2. These orbits are circles. Because x̂3 is perpendicular to x̂1 and

ns NSEW are used in the text description. Right: Frontal views of the plate
r = r cos � x1 + r sin � x2. �4�
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Fig. 3. The plate in the coordinate system defined by x̂1 and x̂2 fixed in the
plane of the plate. The position of the mass element dm= �M /�R2�rd�dr
can be determined either by its position vector r or by polar coordinates r

and �.
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After the substitution of Eqs. �3� and �4� into Eq. �2�, the
vector product r� r̈ contains four terms, and therefore the
torque can be written as the sum of four integrals.9 We inte-
grate over r and � and find that two of the four integrals
vanish and the expression for the net torque acting on the
plate takes the simple form

� =
MR2

4
��x̂1 � ẍ̂1� + �x̂2 � ẍ̂2�� . �5�

Because the net torque has to be zero, we obtain an elegant

condition for x̂1 and x̂2 and their accelerations ẍ̂1�a1 and

ẍ̂2�a2,

�x̂1 � a1� + �x̂2 � a2� = 0 , �6�

which might be what Feynman called the acceleration bal-
ance. This condition can be further simplified. The radial
components of the accelerations, a1,rad and a2,rad, are parallel
to x̂1 and x̂2 and therefore do not contribute to the vector
products in Eq. �6�, and the vector products can be ex-
pressed in terms of the tangential accelerations a1,tan and
a2,tan. If we write the accelerations as a1=a1,rad+a1,tan and
a2=a2,rad+a2,tan and substitute this form into Eq. �6�, we
obtain the simplified acceleration balance condition

�x̂1 � a1,tan� + �x̂2 � a2,tan� = 0 . �7�

B. Directions and magnitudes of tangential accelerations

We will show that the acceleration balance condition ex-
pressed by Eq. �7� can be satisfied only if the a1,tan and a2,tan
vectors lie in the plane specified by x̂1 and x̂2. It follows
from Eq. �7� that the vector products x̂1�a1,tan and x̂2
�a2,tan are opposite vectors and therefore must lie along a
single direction; call it p. The vector x̂1�a1,tan is perpendicu-
lar to x̂1, and the vector x̂2�a2,tan is perpendicular to x̂2.
Therefore p must be perpendicular to both x̂1 and x̂2. Thus p
must be parallel to x̂3. Consequently either a1,tan must be
parallel to x̂2 and a2,tan must be parallel to x̂1, as shown in
Fig. 4, or a1,tan must be antiparallel to x̂2 and a2,tan must be
antiparallel to x̂1.

Because x̂1 is a unit vector perpendicular to a1,tan, the
magnitude of the vector x̂1�a1,tan is �a1,tan�. For similar rea-

ˆ

Fig. 4. There are two ways that the vector products in Eq. �7� can balance
each other. The first one is shown in the figure. The a1,tan vector is parallel to
x̂2 and a2,tan is parallel to x̂1. The second possibility differs only in the
opposite directions of a1,tan and a2,tan and consequently the opposite direc-
tions of the vector products x̂1�a1,tan and x̂2�a2,tan.
sons the magnitude of x2�a2,tan is �a2,tan�. Because the vector
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products are opposite vectors, it follows from Eq. �7� that the
magnitude of both tangential accelerations must be equal,
that is, �a1,tan � = �a2,tan � �atan.

The fact that x̂1 and x̂2 are perpendicular has important
implications for our analysis. It can be expressed by the con-
dition

x̂1 · x̂2 = 0. �8�

If we differentiate Eq. �8� twice with respect to time, we
obtain a constraint on the accelerations and velocities of x̂1
and x̂2:

a1 · x̂2 + a2 · x̂1 + 2v1 · v2 = 0. �9�

If we again decompose the accelerations into their radial and
tangential components, Eq. �9� simplifies to

atan = �v1 · v2� , �10�

which is valid for an arbitrary motion of the plate, enabling
us to determine the magnitude of the tangential accelerations.

C. Consequences for small-angle wobble

We know that the velocity vector v1 is perpendicular to x̂1.
If it were not, x̂1 would change its magnitude in time. There-
fore v1 can be expressed as a linear combination of x̂2 and
x̂3. Similarly, the velocity v2 is perpendicular to x̂2 and can
be expressed as a linear combination of x̂1 and x̂3. Moreover,
when the wobble is small ���1�, the angles �1 and �2 in Fig.
5 are both also small.

To see what Eq. �10� and Fig. 5 predict for the magnitudes
of the tangential accelerations, we express the velocity vec-
tors as linear combinations of vectors fixed in the plate:

v1 = �v1�cos �1 x̂2 + �v1�sin �1 x̂3, �11a�

v2 = − �v2�cos �2 x̂1 + �v2�sin �2 x̂3, �11b�

and substitute them into Eq. �10�. Three of the four scalar
products in the resulting expression are zero because the vec-
tors are perpendicular. The remaining term gives the magni-
tude of the tangential acceleration

atan = �v1��v2�sin �1 sin �2 � �v1��v2��1�2. �12�

If the wobble is small, that is, �→0, then �1 ,�2→0 and

Fig. 5. The vectors x̂1 and x̂2 and the velocities v1 and v2 when the wobble
is small. The case in which the angle �1 between v1 and x̂2 has its maximum
value, �1=2�, is depicted by the frontal view in Fig. 2�a�. The other extreme
is shown in Fig. 2�c� corresponding to the situation in which the angle �2

between v2 and −x̂1 assumes its maximum value, �2=2�. In the general case
shown here and in Fig. 2�b� the values of the angles are between 0 and 2�.
Eq. �12� implies that the tangential acceleration will vanish
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as a small quantity of second order. Therefore when the
wobble angle is small, the tips of x̂1 and x̂2 experience prac-
tically no tangential acceleration. The direct consequence of
this fact is that x̂1 and x̂2 move uniformly on their unit circles
centered on the center of mass of the plate and lying in the
planes specified by their initial position and velocity vectors.
It follows that the circles of x̂1 and x̂2 will coincide if and
only if v1 is parallel or antiparallel to x̂2, and v2 is parallel or
antiparallel to x̂1. Otherwise, the circles will lie in slightly
different planes intersecting in a line going through the cen-
ter of mass of the plate, as shown in Fig. 2.

V. DISCUSSION

The problem of the torque-free motion of a rigid thin disc
has an exact solution based on Euler’s equations that is well
known and described in many textbooks on classical
mechanics.10 It is interesting to see how the results obtained
by our simple analysis compare with those obtained by the
exact solution. Because the comparison is much more spe-
cialized than the presentation above, it can be found as extra
material in Ref. 6.
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